80 research outputs found

    Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa

    Get PDF
    The global shipping network facilitates the transportation and introduction of marine and terrestrial organisms to regions where they are not native, and some of these organisms become invasive. South Africa was used as a case study to evaluate the potential for shipping to contribute to the introduction and establishment of marine and terrestrial alien species (i.e. establishment debt) and to assess how this varies across shipping routes and seasons. As a proxy for the number of species introduced (i.e. 'colonisation pressure') shipping movement data were used to determine, for each season, the number of ships that visited South African ports from foreign ports and the number of days travelled between ports. Seasonal marine and terrestrial environmental similarity between South African and foreign ports was then used to estimate the likelihood that introduced species would establish. These data were used to determine the seasonal relative contribution of shipping routes to South Africa's marine and terrestrial establishment debt. Additionally, distribution data were used to identify marine and terrestrial species that are known to be invasive elsewhere and which might be introduced to each South African port through shipping routes that have a high relative contribution to establishment debt. Shipping routes from Asian ports, especially Singapore, have a particularly high relative contribution to South Africa's establishment debt, while among South African ports, Durban has the highest risk of being invaded. There was seasonal variation in the shipping routes that have a high relative contribution to the establishment debt of the South African ports. The presented method provides a simple way to prioritise surveillance effort and our results indicate that, for South Africa, port-specific prevention strategies should be developed, a large portion of the available resources should be allocated to Durban, and seasonal variations and their consequences for prevention strategies should be explored further. (Résumé d'auteur

    Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin

    Get PDF
    Metastasis is a multi-step process wherein tumour cells detach from the primary mass, migrate through barrier matrices, gain access to conduits to disseminate, and subsequently survive and proliferate in an ectopic site. During the initial invasion stage, prostate carcinoma cells undergo epithelial–mesenchymal-like transition with gain of autocrine signalling and loss of E-cadherin, hallmarks that appear to enable invasion and dissemination. However, some metastases express E-cadherin, and we found close connections between prostate carcinoma cells and hepatocytes in a liver microtissue bioreactor. We hypothesise that phenotypic plasticity occurs late in prostate cancer progression at the site of ectopic seeding. Immunofluorescence staining for E-cadherin in co-cultures of hepatocytes and DU-145 prostate cancer cells revealed E-cadherin upregulation at peripheral sites of contact by day 2 of co-culture; E-cadherin expression also increased in PC-3 cells in co-culture. These carcinoma cells bound to hepatocytes in an E-cadherin-dependent manner. Although the signals by which the hepatocytes elicited E-cadherin expression remain undetermined, it appeared related to downregulation of epidermal growth factor receptor (EGFR) signalling. Inhibition of autocrine EGFR signalling increased E-cadherin expression and cell–cell heterotypic adhesion; further, expression of a downregulation-resistant EGFR variant prevented E-cadherin upregulation. These findings were supported by finding E-cadherin and catenins but not activated EGFR in human prostate metastases to the liver. We conclude that the term epithelial–mesenchymal transition only summarises the transient downregulation of E-cadherin for invasion with re-expression of E-cadherin being a physiological consequence of metastatic seeding

    A statistical approach to estimating the strength of cell-cell interactions under the differential adhesion hypothesis

    Get PDF
    International audienceBACKGROUND: The Differential Adhesion Hypothesis (DAH) is a theory of the organization of cells within a tissue which has been validated by several biological experiments and tested against several alternative computational models. RESULTS: In this study, a statistical approach was developed for the estimation of the strength of adhesion, incorporating earlier discrete lattice models into a continuous marked point process framework. This framework allows to describe an ergodic Markov Chain Monte Carlo algorithm that can simulate the model and reproduce empirical biological patterns. The estimation procedure, based on a pseudo-likelihood approximation, is validated with simulations, and a brief application to medulloblastoma stained by beta-catenin markers is given. CONCLUSION: Our model includes the strength of cell-cell adhesion as a statistical parameter. The estimation procedure for this parameter is consistent with experimental data and would be useful for high-throughput cancer studies

    The genome of the sea urchin Strongylocentrotus purpuratus

    Get PDF
    We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes
    corecore